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1 Introduction

This report is motivated by a reading course to explore thin film problems on different
surfaces. Over the course of this report we derive the thin film equations for an
arbitrary substrate using curvilinear coordinates, providing examples on how these
break down to normal geometries such as a planar substrate and cylinder. We then
proceed to explore papers published by Kondic & Lin which examine free surface
instabilities which grow on an inverted substrate and a funnel. Finally we briefly
mention some open challenges that stem from the rest of the report.

1.1 Background and Motivation

The problem of thin film flows is one that has been widely studied over the last 50
years. This thin film process is often seen in industrial settings such as the drying
of paint or condensation on heat exchanges as well as natural processes such as the
flow of a tear on an eye. In all these different settings, the film is thin and therefore
mathematical models used to explain such systems are based on lubrication theory.

However, for many of the times the problem has been studied, analysis has been
done for a flat substrate inclined at some angle. For example Moriarty et al. [1991]
studied liquid falling on a wall under gravity as well as spreading under a jet of air,
King et al. [1993] examined the problem under a pressure field which was coupled
to the film height using airfoil theory identifying air blown waves, and Myers [1998]
looked at different cases such as a contact lenses or drying paint. Of course, in many
cases where thin films arise, the substrate itself is not flat so it important to be able
to model such problems for different geometries.

One of the earliest examples of this is by Wang [1984]. Later, the formulation was
done for the modelling of coating flows on curved surfaces by Schwartz and Weidner
[1995]. However, this was for a one dimension curved surface. In the early 2000s
however, this derivation was done independently by three groups Myers et al. [2002]
Roy et al. [2002] and Howell [2003].

For these curved surface some groups have studied these in the context of quanti-
fying the effect of curvature on the Ryaleigh Taylor instabilitiy. For example Trinh
et al. [2014] examined the thin film in the context of the film on an underside of a
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cylinder. The effect of the curvature of the substrate was studied whereby they found
certain regimes in which the Rayleigh-Taylor instability was suppressed. This work
was followed up on by Balestra et al. [2018] who performed a similar analysis for the
underside of a sphere. Finally, work was presented by Takagi and Huppert [2010],
examining the evolution of a thin film on top of a cylinder and sphere. However this
only holds until the fluid splits in rivulets.

Studying the thin film instabilities that form on different substrates is also of
interest. Lin and Kondic [2010] studied the instabilities from gravity driven flow on
an inverted flat surface, whereby the thin film flow will start with a constant speed
behind the wave front which will destabilise to produce different pulse trains. Later
they studied the same problem Lin et al. [2012] but for the three-dimensional case
examining the fingers which formed. Finally they examined the problem for a funnel
(Lin et al. [2021]).

In our next section we discuss briefly our curvilinear coordinate system. We then
proceed to derive the thin film equation for this coordinate system in section 2. In
section 3 we discuss the work done by Kondic & Lin. In section 4 we briefly discuss
the work done by Takagi & Huppert and some open challenges.

1.2 Coordinate system

Examining an arbitrary surface we parameterise using a curvilinear coordinate system.
Given a substrate S, we examine the lines of principal curvature and parameterise
these using the variables s1, s2, where there is a mapping from these coordinates to
the standard cartesian coordinates

s1 = s1(x, y, z),

s2 = s2(x, y, z).

Note: For a surface, the directions in which the curvature takes its maximum
and minimum values in the normal plane, are call the principal directions. These are
always orthogonal to each other.

We then can denote the position of any point on the substrate as R = R(s1, s2).
Our first two unit orthogonal vectors e1 and e2 we define to be tangential to s1 and
s2. We define our third to be the normal to S and thus we can write a point in space
as

r(s1, s2, s3) = R(s1, s2) + s3n,

where s3 gives the distance away from substrate along the normal to the substrate.
We recover our substrate when s3 = 0. This is shown in Figure 1

Following Myers et al. [2002] we use the fundamental forms of the surface,

E = R1 ·R1, F = R1 ·R2, G = R2 ·R2,
L = R11 · n, M = R12 · n, N = R22 · n

,

where we define

R1 ≡ ∂R

∂s1
, R2 ≡ ∂R

∂s2

2



Figure 1: A representation of the parameterisation of our substrate by the lines of
principal curvature s1 and s2. Adapted from Roy et al. [2002].
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and

n =
R1 ∧R2

|R1 ∧R2|
=

R1 ∧R2

(EG− F 2)
1/2

is the outwork pointing normal. Our orthogonal unit vectors can be written as

e1 =
R1

E1/2
, e2 =

R2

G1/2
(1)

The curvature is then defined by the relation

κ1 =
L

E
, κ2 =

N

G
.

For our curvilinear system, it is important to know how its derivatives correspond
to other coordinate systems. There exists a scaling factor which arises from the
mapping from one system to another. For our curvilinear coordinates, it has been
shown by Myers et al. [2002] that the scaling factors m1,m2,m3 are given by

m1 = a1(1− s3κ), (2)

m2 = a2(1− s3κ), (3)

m3 = 1, (4)

where a1 = E1/2 and a2 = G1/2. The key differential operators are shown in the
appendix. We proceed to derive the thin film equations for our curvilinear coordinate
system in the next section.

2 Derivation of general 3D thin film equation

Generating the thin film equations is something that has been done in many places.
However, each will use their own specific nondimensionalisation and geometry. This
means that when we get the final form, slight adjustments will be needed to get the
form used in different papers.

2.1 Governing equation reduction

We proceed to derive the general thin film equations for an arbitrary surface using the
coordinate system as introduced in the previous section. Our fluid velocity is given
by u = u1e1 + u2e2 + u3e3 and has viscosity µ and density ρ. The Navier Stokes
equations for an incompressible fluid are then given by:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+

µ

ρ
∇2u+ g (5)

∇ · u = 0 (6)
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which correspond to the momentum and continuity equation respectively. These can
be expressed in terms of our general coordinate system by:

ρ

(
∂u

∂t
+
∑
i

ui

mi

∂u

∂si

)
= −

∑
i

[
1

mi

∂p

∂si

]
ei + ρgg+

µ

m1m2m3

∑
i

∂

∂si

(
mjmk

mi

∂u

∂si

)
,

(7)

∇ · u =
1

m1m2

[
∂

∂s1
(m2u1) +

∂

∂s2
(m1u2) +

∂

∂s3
(m1m2u3)

]
= 0. (8)

We also prescribe a set of boundary conditions for our system:

1 The fluid satisfies a no-flux condition on the substrate,

u3 = 0 on s3 = 0. (9)

2 The fluid also has a no-slip condition on the substrate,

u1 = u2 = 0 on s3 = 0. (10)

3 The fluids satisfies the kinematic condition on the free surface given by s3 =
h(s1, s2, t),

D

Dt
(h− z) = 0 on s3 = h (11)

4 There is a dynamic boundary condition which relates the jump in pressure across
the free surface to the curvature,

∆p = −γK +O(δ) on s3 = h, (Normal) (12)

∂u1

∂s
,
∂u2

∂s
= O(δ) on s3 = h. (Tangential) (13)

These results for the dynamics boundary condition are based on the relationship
between the cauchy stress tensor with the tangent and normal vector on the
surface. Written out more fully, these conditions can be written as

n · (σijnj) = −γK on s3 = h, (14)

t · (σijnj) = 0 on s3 = h. (15)

The simplification of Equations (14) and (15) to Equations (12) and (13) are
shown elsewhere in Roy et al. [2002].

We can rewrite the kinematic boundary condition as

u3 =
∂h

∂t
+

u1

m1

∂h

∂s1
+

u2

m2

∂h

∂s2
on s3 = h(s1, s2, t). (16)

Note: The condition given by Equation (13) assumes an absence of shear stress
such as exists in Myers et al. [2002].
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2.2 Non-dimensionalisation

As we want to consider the thin film problem this results in the ratio between the film
height and substrate length to be quite small. The system is then nondimensionalised
by the following:

[s1] = [s2] = L, [s3] = δL,

[κ1] = [κ2] =
1

L
,

[u1] = [u2] = U, [u3] = δU,

[t] =
L

U
, [p] = [p]

where the pressure is held general for now. Under this nondimensionalisation our
scaling factors now take the form:

m1 = a1 +O(δ), m2 = a2 +O(δ), m3 = 1

Substituting all this into the momentum equation and taking the s1 component
yields

ρU2

L

[
∂u1

∂t
+

(
u1

a1
+

u2

a2
+ δu3

)
∂u1

∂s1

]
= − 1

a1

[p]

L

∂p

∂s1
+ ρgg · e1

+
1

a1a2

µU

L2

[
∂

∂s1

(
a2
a1

∂u1

∂s1

)
+

∂

∂s2

(
a1
a2

∂u1

∂s2

)
+

1

δ2
∂

∂s3

(
a1a2

∂u1

∂s3

)]
(17)

We divide across by µU
δ2L2 and rearrange to give

(
δ2ρ[u]L

µ

)[
∂u1

∂t
+

(
u1

a1
+

u2

a2
+ δu3

)
∂u1

∂s1

]
= − 1

a1

[p]Lδ2

µU

∂p

∂s1
+

(
ρg(δL)2

µ [u1]

)
g · e1

+
1

a1a2

[
δ2

∂

∂s1

(
a2
a1

∂u1

∂s1

)
+ δ2

∂

∂s2

(
a1
a2

∂u1

∂s2

)
+

∂

∂s3

(
a1a2

∂u1

∂s3

)]
(18)

Finally, we define the Reynolds number by Re = ρ[u]L
µ and the Bond number by

B = ρg(δL)2

µ[u1]
. We also scale our pressure to match the viscous forces [p] = µU

Lδ2 . Thus

we simplify again to

δ2Re

[
∂u1

∂t
+

(
u1

a1
+

u2

a2
+ δu3

)
∂u1

∂s1

]
= − 1

a1

∂p

∂s1
+Bg · e1

+
1

a1a2

[
δ2

∂

∂s1

(
a2
a1

∂u1

∂s1

)
+ δ2

∂

∂s2

(
a1
a2

∂u1

∂s2

)
+

∂

∂s3

(
a1a2

∂u1

∂s3

)]
(19)

From this point we assume that δ2Re ≪ 1. In addition, we are trying to generate the
thin film equations and as such the ratio of film height to substrate length should
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also be small, thus δ ≪ 1. By taking the terms of leading order from each of the
momentum equations this yields

1

a1

∂p

∂s1
=

∂2u1

∂s23
+Bg · e1 +O

(
δ2
)
, (20)

1

a2

∂p

∂s2
=

∂2u2

∂s23
+Bg · e2 +O

(
δ2
)
, (21)

∂p

∂s3
= δBg · n+O

(
δ2
)
. (22)

where we have retained the δB term in the leading order balance since B is undeter-
mined.

2.3 Conservation of flux

We proceed to generate the flux equation and then integrate the reduced momentum
equations to derive the thin film. Beginning with the continuity equation (8) and
integrating over the film height;

0 =
1

a1a2

{ ∂

∂s1
(a2u1) +

∂

∂s2
(a1u2) +

∂

∂s3
(a1a2u3)

}
, (23)

=

∫ h

0

∂

∂s1
(a2u1)ds3 +

∫ h

0

∂

∂s2
(a1u2)ds3 +

∫ h

0

∂

∂s3
(a1a2u3)ds3, (24)

=

∫ h

0

∂

∂s1
(a2u1)ds3 +

∫ h

0

∂

∂s2
(a1u2)ds3 +

[
a1a2u3

]h
0
, (25)

=

∫ h

0

∂

∂s1
(a2u1)ds3 +

∫ h

0

∂

∂s2
(a1u2)ds3 + a1a2

(
∂h

∂t
+

u1

a1

∂h

∂s1
+

u2

a2

∂h

∂s2

)
, (26)

=
∂

∂s1

∫ h

0

a2u1ds3 +
∂

∂s2

∫ h

0

a1u2ds3 + a1a2
∂h

∂t
(27)

In Equation (26) we used the kinematic boundary condition on the free surface as well
as the no flux on the substrate. Our final conservation of flux equation is given by

a1a2
∂h

∂t
+

∂Q1

∂s1
+

∂Q2

∂s2
= 0 on s3 = h, (28)

where

Q1 =

∫ h

0

a2u1ds3, (29)

Q2 =

∫ h

0

a1u2ds3. (30)
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2.4 Thin film PDE

Starting with the last of our momentum equation we proceed to solve for the pressure.
Under our nondimensionalisation Equation (12) becomes

∆p = −CK on s3 = h, (31)

where C = γδ2

µU is the capillary number. Then, integrating Equation (22) gives

p(s3)− p(h) = ∆p = C1 + δB(g · n)(s3 − h) +O(δ2, δ3Re) (32)

where C1 is a function of s1, s2, t. Applying the dynamic boundary condition gives
that C1 = −CK. In this case, we have taken atmospheric pressure to be zero. Thus
the pressure jump is simply given by the internal pressure and so

p = −CK + δB(g · n)(s3 − h) +O(δ2, δ3Re). (33)

Taking the si derivative of the pressure for i = 1, 2 gives

∂p

∂si
= −C ∂K

∂si
+ δB(g · n) ∂h

∂si
,

which is independent of s3. Hence we can easily integrate Equations (20) and (21)
to find the speed. We do this for u1 noting that the process is the same for u2.
Integrating twice and applying the tangential dynamic boundary condition and the
no-slip condition gives us

u1 =

(
1

a1

∂p

∂s1
−Bg · e1

)(
s23
2

− hs3

)
, (34)

This allows us to calculate the fluxes.

Q1 =

∫ h

0

a2u1ds3,

= a2

(
1

a1

∂p

∂s1
−Bg · e1

)[
s63
2

− hs23
2

]h
0

,

= −a2

(
1

a1

∂p

∂s1
−Bg · e1

)
h3

3
,

⇒ Q2 = −a1

(
1

a2

∂p

∂s2
−Bg · e2

)
h3

3

(35)
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Figure 2: Sketch of the two-dimensional fluid geometry as from Kondic [2003]

We then substitute our fluxes into our conservation of flux equation (28):

0 =
∂h

∂t
+

1

a1a2

{∂Q1

∂s1
+

∂Q2

∂s2

}
,

=
∂h

∂t
− 1

a1a2

(
∂

∂s1
a2

(
1

a1

∂p

∂s1
−Bg · e1

)
h3

3
− ∂

∂s2
a1

(
1

a2

∂p

∂s2
−Bg · e2

)
h3

3

)
,

=
∂h

∂t
− 1

a1a2

(
a2

∂

∂s1

(
1

a1

∂p

∂s1
−Bg · e1

)
h3

3
− a1

∂

∂s2

(
1

a2

∂p

∂s2
−Bg · e2

)
h3

3

)
,

=
∂h

∂t
−∇s ·

{(
1

a1

∂p

∂s1
−Bg · e1

)
h3

3
e1 +

(
1

a2

∂p

∂s2
−Bg · e2

)
h3

3
e2

}
,

=
∂h

∂t
−∇s ·

{
h3

3

[
∇sp−

2∑
i=1

B(g · ei)ei

]}
(36)

Finally, we plug in our value obtained for pressure in Equation (33) to get the final
thin film equation:

∂h

∂t
+∇s ·

{
h3

3

[
C∇sK + δB(g · n)∇sh+

2∑
i=1

B(g · ei)ei

]}
= 0. (37)

2.5 Examples of substrates

2.5.1 Flat incline

Working with the geometry as shown in Figure 2 ,this results in a simple coordinate
system where we can define s1 = x, s2 = y, s3 = z and the scaling factors m1 = m2 =
m3 = 1. Under this geometry the surface divergence operator becomes the normal
divergence operator and similarly with the surface gradient. Since this is a planar
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Figure 3: Geometry of the circular cylinder with gravity acting down and the z = s3
component going into the page. Figure from Trinh et al. [2014].

surface, the curvature will be zero. Beginning with Equation (37) we have

∂h

∂t
+∇s ·

{
h3

3

[
C∇sK + δB(g · n)∇sh+

2∑
i=1

B(g · ei)ei

]}
= 0,

∂h

∂t
+∇ ·

{
h3

3

[
C∇(δ∇2h) + δB(g · n)∇h+

2∑
i=1

B(g · ei)ei

]}
= 0,

∂h

∂t
+∇ ·

{
h3

3

[
δC∇∇2h− δB cos θ∇h+B sin θe1

]}
= 0,

(38)

2.5.2 Cylinder

We take the case of a cylinder of radius R as in Figure 3. Our parametrisation is
then given by s1 = Rθ, s2 = z as in Myers et al. [2002]. The substrate is then defined
by R = (R cos θ,R sin θ, 0) and the normal for flow on the inside and outside of the
cylinder are given by ∓(cos θ, sin θ, 0) respectively. This then allows calculation of the
fundamental forms. Calculating E is given by

E =
∂R

∂s1
· ∂R
∂s1

,

= [∓(− sin θ, cos θ, 0)] · [∓(− sin θ, cos θ, 0)],

= 1.

(39)
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From following the same procedure, we find that G = 1, L = ± 1
R , N = 0 and that

the curvatures are given by κ1 = ± 1
R , κ2 = 0. Under this choice of s1, s2, the scaling

factors are all equal to one. This results in the surface operators being equivalent to
the normal operators. Beginning with our thin film equation (37)

∂h

∂t
+∇s ·

{
h3

3

[
C∇sK + δB(g · n)∇sh+

2∑
i=1

B(g · ei)ei

]}
= 0,

∂h

∂t
+∇ ·

{
h3

3

[
C∇(κ1 + δhκ2

1 + δ∇2h) + δB(g · n)∇h+

2∑
i=1

B(g · ei)ei

]}
= 0,

∂h

∂t
+∇ ·

{
h3

3

[
C 1

R

∂

∂θ
(δhκ2

1 + δ∇2h)e1 + C ∂

∂z
(δhκ2

1 + δ∇2h)e2+

δB(g · n) 1
R

∂h

∂θ
e1 + δB(g · n)∂h

∂z
e2 +

2∑
i=1

B(g · ei)ei

]}
= 0,

∂h

∂t
+

1

R

∂

∂θ

{
h3

3

(
δ

[
C 1

R

∂

∂θ
(
h

R2
+∇2h) +B(g · n) 1

R

∂h

∂θ

]
+B(g · e1)

)}

+
∂

∂z

{
h3

3

(
δ

[
C ∂

∂z
(
h

R2
+∇2h) +B(g · n)∂h

∂z

]
+B(g · e2)

)}
= 0

(40)
In the case where the cylinder is of unit length and gravity is of the form g =

−cosθn+ sin θe1, this is similar to the form as given in King et al. [2007] for their
case of α = 0,

∂h

∂t
+

∂

∂θ

{
h3

3

(
δ

[
C ∂

∂θ
(h+∇2h) +B cos θ

∂h

∂θ

]
+B sin θ

)}

+
∂

∂z

{
δh3

3

[
C ∂

∂z
(h+∇2h) +B cos θ

∂h

∂z

]}
= 0,

(41)

where we have an extra term in the form of δB cos θ which corresponds to the normal
component of gravity.

In the case that our film height is independent of s3 = z, then this simplifies to
the form

∂h

∂t
+

∂

∂θ

{
h3

3
[δC(hθ + hθθθ) + δB cos θθ] +B sin θ

}
= 0. (42)
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3 Kondic & Lin

3.1 Thin films flowing down inverted substrate

3.1.1 Formulation

In the paper published by Lin and Kondic [2010], they examined the stability of thin
films on an inverted substrate. Under their nondimensionalisation, they established a
key parameter D by which variations led to wave like behaviour forming.

To reduce our problem to their formulation, we start with our example for an
incline plane given by

∂h

∂t
+∇ ·

{
h3

3

[
δC∇∇2h− δB cos θ∇h+B sin θe1

]}
= 0 (43)

They have rescaled their velocity by U =
ρgh2

0 sinα
3µ . This is equivalent to setting

B sin θ
3 = 1 for our incline formulation. From our second term in the brackets this

results in δ → (3Ca)1/3 relation. Finally, examining the first term in the brackets,
based on our nondimensionalisation:

δC
3

=
δ3γ

3µU
,

=
3Caγ

3µU
,

= 1,

(44)

since they have defined their Capillary number as Ca = µU
γ .

Thus, their governing equation is given by

∂h

∂t
+∇ · [h3∇∇2h]−D∇ · [h3∇h] +

∂h3

∂x
= 0 (45)

where D = (3Ca)1/3 cotα and measures the normal component of gravity.
They proceed to examine the 2D setting where h = h(x, t) where h is y -independent.

Under this simplification the master equation is given as

∂h

∂t
+ [h3(hxxx −Dhx + 1)]x = 0. (46)

The boundary conditions are chosen so that the height is always 1 at x = 0 and there
is a constant flux.

h(0, t) = 0, (47)

hxxx(0, t)−Dhx(0, t) = 0. (48)

In addition, they have added a small layer of wetness along the entire plane. This
precursor is given a thickness b. For a substrate of length L, this adds the other two
boundary conditions:

h(L, t) = b, (49)

hx(L, t) = 0. (50)
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3.1.2 Results

Under this model, variation in the D parameter allowed observation of wave behaviour
in the system. This was studied for negative values of D which correspond to an
inverted substrate. Different regimes were found for decreasing values of D.

Type 1 For −1.1 ≤ D < 0 a strong capillary ridge forms behind the wave front. An
additional heavily damped oscillation can be seen behind as shown in Figure 4a.
The wave speed reach a value constant to U = 1 + b+ b2. Analysis on this type
will be discussed in the next section.

Type 2 For −1.9 ≤ D < 1.1, a wave train follows behind the capillary ridge. These
waves move faster than the front itself. Three different states are found behind
the ridge, two types of waves and a constant state as in Figure 4b.

Type 3 Finally, the regime −3 ≤ D < 1.9 is a holds nonlinear steady travelling waves.
The nature of these changes as the magnitude of D increases with solitary waves
for large magnitude (Figure 4d) and more sinusoidal for lower magnitude (Figure
4c).

3.1.3 Analysis

Travelling Wave In the regime of type 1, we expect a wave front which reaches
a constant speed. Thus we assume a travelling wave for our system and rewrite
H(s) = h(x, t) where we have set s = x− Ut. Plugging into Equation (46) gives

∂H

∂s

∂s

∂t
+

∂

∂s
[H3(Hsss −DHs + 1] = 0,

−U
∂H

∂s
+

∂

∂s
[H3(Hsss −DHs + 1] = 0,

−UH + [H3(Hsss −DHs + 1] = c.

(51)

Imposing the condition that H → 1 as s → −∞ gives

−U + 1 = c. (52)

Then imposing the other boundary condition of H → b as s → ∞ gives

−Ub+ b3 = c. (53)

Solving for U and c gives us that U = 1 + b+ b2 and c = −b− b2.

Linear Stability Analysis For the type 1 regime, we want to observe what happens
under a small perturbation. We use linear stability analysis and assume that the
height of the thin film away from the capillary ridge is given by h(x, t) = 1 + ξ(x, t)
where ξ ≪ 1. We plug this into Equation (46) and look for terms of the first order:
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(a) Final profile of thin film for D = −1.0
at t = 400.

(b) Wave profile of thin film down an in-
verted substrate for D = −1.5 at t = 400.

(c) Wave profile for D = −2.0 at t = 400. (d) Profile for D = −2.5 at t = 350.

Figure 4: Profile of thin film evolution for time snapshot at t = 400 for (a-c) and
t = 350 for (d) for various values of D.
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Figure 5: Geometry of the funnel as in Lin et al. [2021].

∂ξ

∂t
+ [(1 + ξ)3(ξxxx −Dξx + 1)]x = 0,

∂ξ

∂t
+ [(1 + 3ξ + 3ξ2 + ξ3)(ξxxx −Dξx + 1)]x = 0,

∂ξ

∂t
+ [ξxxx −Dξx + 3ξ)]x +O(ξ2) = 0,

ξt + ξxxxx −Dξxx + 3ξx = 0.

(54)

We let ξ ∼ expi(kx−ωt) where ω = ωr + iωi and plug this in to obtain the dispersion
relation

−i(ωr + iωi) + k4 +Dk2 + 3ik = 0, (55)

which gives the following relations

ωr = 3k, (56)

ωi = −(k4 +Dk2). (57)

We are concerned with the ωi term as it turns out to be the real component of ξ.
Thus for ωi < 0, the real component is negative and any perturbations will die out.
However, for D < 0 it reaches a critical point where the critical wave number is given
by kc =

√
−D. In addition, by looking at the first relation, we get that the linear

waves has a speed of 3 which is larger than the travelling wave speed U as discussed
in the previous section.

3.2 Thin liquid films in a funnel

Following on from the inverted substrated Lin et al. [2021] continued on to examine
a funnel. The problem’s geometry is shown in Figure 5 where we see the principal
directions given by s1 = r and s2 = θ. The funnel has opening angle α and is
parameterised by

R = (r cosα cos θ, r cosα sin θ, r sinα), r ∈ [Rl, Rr], θ ∈ [0, 2π]. (58)
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We note that r is contained in an interval where Rl is far away from the nose of the
cone to avoid the singularity. Calculating our fundamental forms we find that

E = 1, G = r2 cos2 α,

L = 0, N = r cosα sinα

and from Equation (1) we find out unit vectors and normal on the funnel to be

e1 = (cosα cos θ, cosα sin θ, sinα), (59)

e2 = (− sin θ, cos θ, 0), (60)

n = (− sinα cos θ,− sinα sin θ, cosα). (61)

From our fundamental forms we find the curvatures to be κ1 = 0 and κ2 = tanα
r . In

this setting, the gravitational component can be written as g = (0, 0,−1) and thus we
can rewrite our thin film equation (37) as

∂h

∂t
+∇s ·

{
h3

3
[C∇sK − δB cosα∇sh−B sinαe1]

}
= 0. (62)

Replacing for the curvature and an adjustment to the nondimensionalisation gives
their form of

∂h

∂t
+∇s ·

{
h3

[
∇s

(
∇2

sh+
tanα

r

)
− cosα∇sh− sinαe1

]}
= 0. (63)

From this point on, they consider three steps.

1 Self similar : They initially examine the system in the absence of surface ten-
sion keeping only the substrate curvature and tangential gravity components.
Assuming a solution of the form

h(r, t) = T (t)H(η), η =
R− r

rf (t)
, (64)

- where R is the position on the hill where the fluid was initial deposited
rf (t) is the position travelled by the front and R − rf (t) is the position of
the front - for small times they find the film height at the front to be h(r =

R − rf (t), t) =
(

ṽc
2cs

)1/3
t−1/3. Here ṽc is found via a column constraint and

cs = sinα+ tanα/R2. Thus, when the fluid flows only a short distance down
the funnel, this is identical to flow down a plane as found in Kondic [2003].
However, for flow down a funnel, while initially the film height will decrease, as
the fluid converges to the center, it will begin to increase again.

2 Constant volume, convergence: In order to gain insight in the nature of the
funnel flow as the fluid converges, they take the self similar solution and impose
a fixed volume constraint. The result that they find is that he front begins
to accelerate as it approaches the funnel center. Looking at Figures 6a and
6b which compares the difference between the funnel and the plane, we see in
Figure 6a the increasing film height as the front moves closer to the center.
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(a) Height profile of thin film down a funnel.

(b) Wave profile of thin film down an inverted substrate.

Figure 6: Constant volume flow for a (a) funnel (b) inverted plane. Taken from Lin
et al. [2021].

3 Instability : The stability analysis for the funnel becomes a lot more complex
than the incline plane especially for constant volume. The base consideration is
the constant flux problem where the thickness of the film doesn’t depend on the
tranverse coordinate. In this case, the fluid moves down the slope with a constant
speed U which results in them taking a move frame in which the base state is
time independent. For this problem of flow in a funnel, the convergent nature of
the film means that the base state is evolving. Ultimately, they take a rather
simplistic approach, where they take a snapshot in time taking key quantities
such as the opening angle α, and a thickness h0 which is the film thickness
behind the capillary ridge. Using these, they then match this to a solution from
the incline plane which has the same characteristics, thus generating the critical
wavenumbers.

4 Final remarks

4.1 Huppert & Takagi

Takagi and Huppert [2010] conducted a series of experiments to observe how a fluid
such as glycerine or golden syrup would evolve on the top side of a cylinder or sphere
driven by gravity. In these experiments a fixed volume of fluid was placed on top. A
series of snapshots from the spherical ball case are shown in Figures 7a, 7b and 7c.
Accompanying the experiments was a series of analysis for thickness of the flow. For
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(a) t = 120 (b) t = 240. (c) t = 360.

Figure 7: Snapshots of the flow of golden syrup down a beachball. In (b) we observe
instabilities forming in the front which leads to rivulets forming in (c). Taken from
Takagi and Huppert [2010].

the cylindrical case their dimensional governing equation was

∂h

∂t
+

g

3µR

∂

∂θ
(sin θh3) = 0. (65)

By scaling with regards to the cross sectional area, for small θ they found the height
of the film to be of the form:

h(t) =

(
3Rµ

2g

)1/2

t−1/2 (66)

and thus independent of θ as well as decreasing like t−1/2. However, this only holds
for small θ and before instabilities results in the front splitting to rivulets. Performing
a similar analysis in the case of the sphere, they again find a similar result for the
evolution of the film height which agrees with experiment under the same conditions
as the cylinder. Experimentally it was shown that these rivulets do not develop in
the case of large initial volume.

4.2 Open Challenges

Through this reading course there has been two fundamental objectives: (i) to get
more familiar with differential geometry on curved surfaces (ii) to understand what
different research groups have done concerning stability analysis on these (complex)
surfaces. With regards to stability analysis on these complex surfaces, very little
has actually been done, where from the case of Lin & Kondic initial analysis was
done on a plane, and then analysis from the funnel was mapped to the results of the
plane. Thus, one of the obvious open challenges is can the linear stability analysis be
applied to geometries such as a cylinder and sphere - and if it agrees with experimental
work - and if so, to other more complex surfaces. Regarding the cylinder and sphere,
while these have constant curvature, as the fluid drips down the different components
of gravity will change providing a clear distinction from the planar case. Are their
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regimes on top of a cylinder or sphere where this doesn’t play an important role?
Certainly the question of whether we can measure the wavenumbers under which
instabilities form and what adaptations of the method used by Lin & Kondic is of
great interest.

4.3 Conclusion

Over the course of this report we have derived the three-dimensional thin film equation
for an arbitrary surface using curvilinear coordinates. From this we provided examples
of how this simplifies to classical geometries such as a plane and cylinder. Using these
examples we studied how thin film instabilities form on an inverted plane using linear
stability analysis. We then proceeded to summarise the paper by Lin et al. [2021] on
thin films down a funnel. Finally we have briefly accounted for the results by Takagi
and Huppert [2010] on syrup down a beach ball and raised the main open challenges
that has arisen through this reading course.

5 Appendix

∇ =
∑
i

ei
mi

∂

∂qi

∇ · u =
1

m1m2m3

[
∂

∂q1
(m2m3u1) +

∂

∂q2
(m1m3u2) +

∂

∂q3
(m1m2u3)

]
=

1

m1m2m3

3∑
i=0

∂

∂qi
(mjmkui)

∇2 =
1

m1m2m3

[
∂

∂q1

(
m2m3

m1

∂

∂q1

)
+

∂

∂q2

(
m3m1

m2

∂

∂q2

)
+

∂

∂q3

(
m1m2

m3

∂

∂q3

)]
=

1

m1m2m3

3∑
i=0

∂

∂qi

(
mjmk

mi

∂

∂qi

)
(67)

5.1 Surface Operations

∇s · (q1e1 + q2e2) =
1

a1a2

[
∂

∂x1
(a2q1) +

∂

∂x2
(a1q2)

]
∇s =

∂

∂x1

e1
a1

+
∂

∂x2

e2
a2

∇2
s =

1

a1a2

[
∂

∂x1

(
a2
a1

∂

∂x1

)
+

∂

∂x2

(
a1
a2

∂

∂x2

)] (68)
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